petak, 10. rujna 2010.

Language of Insulin Decoded (3)




Example 2

94 atoms

94 atoms

G

I

Q

I

Q

Q

I

G

G

G

I

10

22

20

22

20

20

22

10

10

10

22

1

2

5

10

15

25

27

29

41

44

46

94 atoms

94 atoms

G

I

Q

I

Q

Q

I

G

G

G

I

10

22

20

22

20

20

22

10

10

10

22

52

53

56

61

66

76

78

80

92

95

97

94 atoms

94 atoms

G

I

Q

I

Q

Q

I

G

G

G

I

10

22

20

22

20

20

22

10

10

10

22

103

104

107

112

117

127

129

131

143

146

148

94 atoms

94 atoms

G

I

Q

I

Q

Q

I

G

G

G

I

10

22

20

22

20

20

22

10

10

10

22

154

155

158

163

168

178

180

182

194

197

199

94 atoms

94 atoms

G

I

Q

I

Q

Q

I

G

G

G

I

10

22

20

22

20

20

22

10

10

10

22

205

206

209

214

219

229

231

233

245

248

250

94 atoms

94 atoms

G

I

Q

I

Q

Q

I

G

G

G

I

10

22

20

22

20

20

22

10

10

10

22

256

257

260

265

270

280

282

284

296

299

301

(94 x 12) = 1128;

I,V,K

188 atoms

I

V

I

V

I

V

V

I

K

22

19

22

19

22

19

19

22

24

2

3

10

23

27

33

39

46

50

188 atoms

I

V

I

V

I

V

V

I

K

22

19

22

19

19

18

18

17

17

53

54

61

74

78

84

90

97

101

188 atoms

I

V

I

V

I

V

V

I

K

22

19

22

19

22

19

19

22

24

104

105

112

125

129

135

141

148

152

188 atoms

I

V

I

V

I

V

V

I

K

22

19

22

19

22

19

19

22

24

155

156

163

176

180

186

192

199

203

188 atoms

I

V

I

V

I

V

V

I

K

22

19

22

19

22

19

19

22

24

206

207

214

227

231

237

243

250

254

188 atoms

I

V

I

V

I

V

V

I

K

22

19

22

19

22

19

19

22

24

257

258

265

278

282

288

294

301

305

(188 x 6) = 1128;

V,F,H,R

188 atoms

V

F

V

H

H

V

V

R

F

19

23

19

20

20

19

19

26

23

3

22

23

26

31

33

39

43

45

188 atoms

V

F

V

H

H

V

V

R

F

19

23

19

20

20

19

19

26

23

54

73

74

77

82

84

90

94

96

188 atoms

V

F

V

H

H

V

V

R

F

19

23

19

20

20

19

19

26

23

105

124

125

128

133

135

141

145

147

188 atoms

V

F

V

H

H

V

V

R

F

19

23

19

20

20

19

19

26

23

156

175

176

179

184

186

192

196

198

188 atoms

V

F

V

H

H

V

V

R

F

19

23

19

20

20

19

19

26

23

207

226

227

230

235

237

243

247

249

188 atoms

V

F

V

H

H

V

V

R

F

19

23

19

20

20

19

19

26

23

258

277

278

281

286

288

294

298

300

(188 x 6) = 1128;

Y,N,P,K

188

atoms

Y

N

Y

N

N

Y

Y

P

K

24

17

24

17

17

24

24

17

24

14

18

19

21

24

37

47

49

50

188 atoms

Y

N

Y

N

N

Y

Y

P

K

24

17

24

17

17

24

24

17

24

65

69

70

72

75

88

98

100

101

188

Atoms

Y

N

Y

N

N

Y

Y

P

K

24

17

24

17

17

24

24

17

24

116

120

121

123

126

139

149

151

152

188

atoms

Y

N

Y

N

N

Y

Y

P

K

24

17

24

17

17

24

24

17

24

167

171

172

174

177

190

200

202

203

188

Atoms

Y

N

Y

N

N

Y

Y

P

K

24

17

24

17

17

24

24

17

24

218

222

223

225

228

241

251

253

254

188

atoms

Y

N

Y

N

N

Y

Y

P

K

24

17

24

17

17

24

24

17

24

269

273

274

276

279

292

302

304

305

(188 x 6) = 1128;

G,E,S,A,P

188 atoms

G

E

S

S

E

G

S

E

A

G

E

G

P

10

19

14

14

19

10

14

19

13

10

19

10

17

1

4

9

12

17

29

30

34

35

41

42

44

49

188 atoms

G

E

S

S

E

G

S

E

A

G

E

G

P

10

19

14

14

19

10

14

19

13

10

19

10

17

52

55

60

63

68

80

81

85

86

92

93

95

100

188

atoms

G

E

S

S

E

G

S

E

A

G

E

G

P

10

19

14

14

19

10

14

19

13

10

19

10

17

103

106

111

114

119

131

132

136

137

143

144

146

151

188

atoms

G

E

S

S

E

G

S

E

A

G

E

G

P

10

19

14

14

19

10

14

19

13

10

19

10

17

154

157

162

165

170

182

183

187

188

194

195

197

202

188

atoms

G

E

S

S

E

G

S

E

A

G

E

G

P

10

19

14

14

19

10

14

19

13

10

19

10

17

205

208

213

216

221

233

234

238

239

245

246

248

253

188

atoms

G

E

S

S

E

G

S

E

A

G

E

G

P

10

19

14

14

19

10

14

19

13

10

19

10

17

256

259

264

267

272

284

285

289

290

296

297

299

304

(188 x 6) = 1128;

G,I,S,L,H,A,R,P

(188 + 188) atoms;

G

I

S

I

S

L

L

H

I

G

10

22

14

22

14

22

22

20

22

10

1

2

9

10

12

13

16

26

27

29

S

H

L

A

L

L

G

R

G

I

P

Sum

14

20

22

13

22

22

10

26

10

22

17

376

30

31

32

35

36

38

41

43

44

46

49

(188 + 188) atoms;

G

I

S

I

S

L

L

H

I

G

10

22

14

22

14

22

22

20

22

10

52

53

60

61

63

64

67

77

78

80

S

H

L

A

L

L

G

R

G

I

P

Sum

14

20

22

13

22

22

10

26

10

22

17

376

81

82

83

86

87

89

92

94

95

97

100

G

I

S

I

S

L

.

.

I

P

Sum

10

22

14

22

14

22

.

.

22

17

376

103

104

111

112

114

115

.

.

148

151

etc.

(188 x 12) = (1128 + 1128);

Figure 3.Groups of aminoacids: (G,I,Q), (I,V,K), (V,F,H,R), (Y,N,P,K) and (G,E,S,A,P).

Notes: Each peptide chain can have the exact number of aminoacids necessary to meet the strictly determined mathematical conditioning. It can have as many atoms as necessary to meet the mathematical balance of the biochemical phenomenon at certain mathematical level, etc. The digital language of biochemistry has a countless number of codes and analogue codes, as well as other information content. These pictures enable us to realize the very essence of functioning of biochemical processes.

Discret code 1128 presented in Figure 3 are calculated using the relationship between corresponding groups of amino acids. These are groups with different numbers of amino acids. There are different ways and methods of selecting these groups of amino acids, which method is most efficient some We hope that science will determine which method is most efficient for this selection

In the previous examples we translated the physical and chemical parameters from the language of biochemistry into the digital language of programmatic, cybernetic and information principles. This we did by using the adequate mathematical algorithms. By using chemical-information procedures, we calculated the numerical value for the information content of molecules. What we got this way is the digital picture of the phenomenon of biochemistry. These digital pictures reveal to us a whole new dimension of this science. They reveal to us that the biochemical process is strictly conditioned and determined by programmatic, cybernetic and information principles.

From the previous examples we can see that this protein really has its quantitative characteristics. It can be concluded that there is a connection between quantitative characteristics in the process of transfer of genetic information and the qualitative appearance of given genetic processes.

DISCUSSION

The results of our research show that the processes of sequencing the molecules are conditioned and arranged not only with chemical and biochemical lawfulness, but also with program, cybernetic and informational lawfulness too. At the first stage of our research we replaced nucleotides from the Amino Acid Code Matrix with numbers of the atoms in those nucleotides. Translation of the biochemical language of these amino acids into a digital language may be very useful for developing new methods of predicting protein sub-cellular localization, membrane protein type, protein structure secondary prediction or any other protein attributes. Since the concept of Chou's pseudo amino acid composition was proposed 1,2, there have been many efforts to try to use various digital numbers to represent the 20 native amino acids in order to better reflect the sequence-order effects through the vehicle of pseudo amino acid composition. Some investigators used complexity measure factor 3, some used the values derived from the cellular automata 4-7, some used hydrophobic and/or hydrophilic values 8-16, some were through Fourier transform 17,18, and some used the physicochemical distance 19. It is going to be possible to use a completely new strategy of research in genetics in the future. However, close observation of all these relationships, which are the outcomes of periodic laws (more specifically the law of binary coding), stereo-chemical and digital structure of proteins.

Nema komentara:

Objavi komentar