srijeda, 1. travnja 2015.

PROBLEMS FOR 46th INTERNATIONAL MATHEMATICS OLYMPIAD IN MEXICO

                                                                   Problem 1

 Magic codes 19 and 7

In group of all natural numbers from X to Y there are two codes which interconnect all those numbers. Those are codes A and B.

Formula of codes A and B

{[SA(R1,2,3,n) x B] - [SB(R1,2,3,n) x A] + (AxB)} = (AxBxA);
A = ?
B = ?

SA, SB = Groups of AB numbers in group of all natural numbers from X to Y
R1,2,3,n = Natural numbers from X to Y
.......
Help in resolving this problem:


Example 1

SA(R1,2,3,n)
A= 6; R = 114;
S6(114) = (109+110+111+112+113+114) ) = 669;
.........

Example 2

SA(R1,2,3,n)
A= 25; R = 233;
S25(233) = (209+210+211+212+213+214+215+216+217+218+219+220+221+222+223+
+224+225+226+227+228+229+230+231+232+233 ) = 5525;
........

Example 3

SB(R1,2,3,n)
B= 8; R = 98;
S8(98) = (91+92+93+94+95+96+97+98) = 756;

Etc.
.................................................................

SOLUTION:

{[SA(R1,2,3,n) x B] - [SB(R1,2,3,n) x A] + (AxB)} = (AxBxA);

A = 7;   B = 19;
............

{[S7(R1,2,3,n) x 19] - [S19(R1,2,3,n) x 7] + (7x19)} = (7x19x7);
...........

Example 1

R = 35;

{[S7(35) x 19] - [S19(35) x 7] + (7x19)} = (7x19x7);

S7(35) = (29+30+31+32+33+34+35) = 224;

S19(35) = (17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35) = 494;

(224 x 19) – (494 x 7) + (7 x 19) = (7 x 19 x 7);

...............

Example 2

R = 114;

{[S7(114) x 19] - [S19(114) x 7] + (7x19)} = (7x19x7);

S7(114) = (108+109+110+111+112+113+114) = 777;

S19(114) = (96+97+98...+114) = 1995;

(777 x 19) – (1995 x 7) + (7 x 19) = (7 x 19 x 7);

..............

Example 3

R = 1070;

{[S7(1070) x 19] - [S19(1070) x 7] + (7x19)} = (7x19x7);

S7(1070) = (1064+1065+1066...+1070) = 7469;

S19(1070) = (1052+1053+1054...+1070) = 20159;

(7469 x 19) – (20159 x 7) + (7 x 19) = (7 x 19 x 7);
...............

Example 4

R = Y;

{[S7(Y) x 19] - [S19(Y) x 7] + (7x19)} = (7x19x7);

*********

PROBLEM 2

Magic codes 19 and 7 in magic square

8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93

In this square, a group of numbers which are interconnected by magic codes 19 and 7 need to be found.


SOLUTION:

Example 1

Groups of even and odd numbers in Square
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93

Even numbers = (8 + 24 + 26 + 30 + 36 + 44 + 46 + 60 + 62 + 64 +  88) = 488;
Odd numbers = (9+15+25+43+45+47+49+59+61+63+65+79+87+93) = 740;

Analog code of number 488 is number 884;
Analog code of number 740 is number 047;

(884+47) = (AxBxA) = (7x19x7);
............

Example 2

Groups of numbers that are distributed in the squares with even and odd  numbers
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93

Group of numbers that are distributed in the squares with even  number
(2,4,6,8 etc.) = (9+24+26+36+ 44+46+49+60+62+64+79+88) = 587;


Group of numbers that are distributed in the squares with odd number
(1,3,5,7,9 etc.) = (8+15+25+30+43+45+47+59+61+63+65+87+ 93) = 641;

Analog code of number 587 is number 785;
Analog code of number 641 is number 146;

(785+146) = (AxBxA) = (7x19x7);
............

Example 3
Numbers in even and odd columns
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93

Numbers in even columns  ( 2 and 4) = (9+24+30+43+46+49+61+63+79+88) = 492;
Numbers in odd columns   (1, 3, 5) = (8+15+25+26+36+44+45+47+59+60+62+64+65+87+93) =736;
Analog code of number 492 is number 294;
Analog code of number 736 is number 637;

(294+637) = (AxBxA) = (7x19x7);
............

Example 4
Outer and inner numbers in quadrant
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93

Outer numbers in quadrant = (8+9+15+24+25+26+44+45+59+60+64+65+79+87+88+93) = 791;
           Inner numbers in quadrant = (30+36+43+46+47+49+61+62+63) = 437;

Analog code of number 791 is number 197;
Analog code of number 437 is number 734;

(197+734) = (AxBxA) = (7x19x7);
............

Example 5

Numbers in columns
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93

Columns 1,2,4,5 = (8+9+24+25+26+30+43+44+45+46+49+59+60+61+63+64+65+79+88+93)=981;
Column 3 = (15+36+47+62+87) = 247;
Analog code of number 981 is number 189;
Analog code of number 247 is number 742;

(189+742) = (AxBxA) = (7x19x7);
............
Example 6
Numbers in diagonal “A”
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93
Diagonal “A” = (8+30+47+63+93) = 241;
Other numbers = (9+15+24+25+26+36+43+44+45+46+49+59+60+61+62+64+65+79+87+88) = 987;

Analog code of number 241 is number 142;
Analog code of number 987 is number 789;

(142+789) = (AxBxA) = (7x19x7);
............
Example 7
Groups of numbers
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93
Group 1 = (8+9+15+36+47+62+87+88+93) = 445;
Group 2 =(24+25+26+30+43+44+45+46+49+59+60+61+63+64+65+79) = 783;

Analog code of number 445 is number 544;
Analog code of number 783 is number 387;

(544+387) = (AxBxA) = (7x19x7);
............
Example 8

Groups of numbers
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93
Group 1 = (8+9+15+24+25+44+59+64+65+79+87+88+93) = 660;
Group 2 = (26+30+36+43+45+46+47+49+60+61+62+63) = 568;

Analog code of number 660 is number 066;
Analog code of number 568 is number 865;

(66+865) = (AxBxA) = (7x19x7);
............
Example 9

Groups of numbers
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93
Group 1 = (8+25+30+36+43+45+46+47+49+59+61+62+63+65+93) = 732;
Group 2 = (9+15+24+26+44+60+64+79+87+88) = 496;

Analog code of number 732 is number 237;
Analog code of number 496 is number 694;

(237+694) = (AxBxA) = (7x19x7);
............

Example 10

Groups of numbers

8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93
Group 1 = (8+25+30+43+47+61+63+65+93) = 435;
Group 2 = (9+15+24+26+36+44+45+46+49+59+60+62+64+79+87+88) = 793;

Analog code of number 435 is number 534;
Analog code of number 793 is number 397;

(534+397) = (AxBxA) = (7x19x7);
............

Example 11
Groups of numbers
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93

Group 1 = (8+9+15+24+25+30+43+61+63+65+79+87+88+93) = 690;
Group 2 = (26+36+44+45+46+47+49+59+60+62+64) = 538;

Analog code of number 690 is number 096;
Analog code of number 538 is number 835;

(96+835) = (AxBxA) = (7x19x7);
............
Example 12
Groups of numbers
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93
Group 1 = (8+9+15+25+26+36+44+45+47+59+60+62+64+65+87+88+93) = 833;
Group 2 = (24+30+43+46+49+61+63+79) = 395;

Analog code of number 833 is number 338;
Analog code of number 395 is number 593;

(338+593) = (AxBxA) = (7x19x7);
............
Example 13
Groups of numbers
8
9
15
24
25
26
30
36
43
44
45
46
47
49
59
60
61
62
63
64
65
79
87
88
93
Group 1 = (8+25+30+36+43+46+49+61+62+63+65+93) = 581;
Group 2 = (9+15+24+26+44+45+47+59+60+64+79+87+88) = 647;

Analog code of number 581 is number 185;
Analog code of number 647 is number 746;

(185+746) = (AxBxA) = (7x19x7);
............
Example 13
Groups of numbers
8
9
15
24
26
30
36
43
45
46
47
49
60
61
62
63
65
79
87
88
Group 1 = (8+9+24+25+30+43+46+49+61+63+65+79+88+93) = 683;
Group 2 = (15+26+36+44+45+47+59+60+62+64+87) = 545;

Analog code of number 683 is number 386;
Analog code of number 545 is number 545;

(386+545) = (AxBxA) = (7x19x7);

etc.

PROBLEM 3

Codes 19 and 7 in
equation with 19 unknown values

(N1+N2+N3+N4+N5+N6+N7+N8+N9+N10+N11+N12+N13+N14+N15 +
+ N16+N17+N18+N19) = Y;

Try to find unknown values using codes 19 and 7.

Solution

In this equation we have 1 group with 19 unknown values and 13 groups with 7 unknown values:

1 and 19 è 119;
13 and 07 = 1307;

Y = (119 + 1307) è 1426;

(A1+A2+A3+A4+A5+A6+A7+A8+A9+A10+A11+A12+A13+A14+15 +
+ A16+A17+A18+A19) =1426;

 Groups with 7 numbers
G1 = (N1,N2,N3,N4,N5,N6,N7);
G2 = (N2,N3,N4,N5,N6,N7,N8);
G3 = (N3,N4,N5,N6,N7,N8,N9);
G4 = (N4,N5,N6,N7,N8,N9,N10);
G5 = (N5,N6,N7,N8,N9,N10,N11);
G6 = (N6,N7,N8,N9,N10,N11,N12);
G7 = (N7,N8,N9,N10,N11,N12,N13);
G8 = (N8,N9,N10,N11,N12,N13,N14);
G9 = (N9,N10,N11,N12,N13,N14,N15);
G10 = (N10,N11,N12,N13,N14,N15,N16);
G 11 = (N11,N12,N13,N14,N15,N16,N17);
G12 = (N12,N13,N14,N15,N16,N17,N18);
G13 = (N13,N14,N15,N16,N17,N18,N19);

(G1+G2+G3+G4+G5+G6+G7+G8+G9+G10+G11+G12+G13) =1426;

                               Solution:

G1 = 112; G2=111; G3=122; G4=108; G5=113; G6 =114; G7=116; G8=90;
G9=112; G10=99; G11=95; G12=117; G13=117;

(112+111+122+108+113+114+116+90+112+99+95+117+117) = 1426;

 G1 = (N1+N2+N3+N4+N5+N6+N7) = 112;
G2 = (N2+N3+N4+N5+N6+N7+N8) = 111;
G3 = (N3+N4+N5+N6+N7+N8+N9) = 122;
G4 = (N4+N5+N6+N7+N8+N9+N10) = 108;
G5 = (N5+N6+N7+N8+N9+N10+N11) = 113;
G6 = (N6+N7+N8+N9+N10+N11+N12) = 114;
G7 = (N7+N8+N9+N10+N11+N12+N13) = 116;
G8 = (N8+N9+N10+N11+N12+N13+N14) = 90;
G9 = (N9+N10+N11+N12+N13+N14+N15) = 112;
G10 = (N10+N11+N12+N13+N14+N15+N16) = 99;
G11 = (N11+N12+N13+N14+N15+N16+N17) = 95;
G12 = (N12+N13+N14+N15+N16+N17+N18) = 117;
G13 = (N13+N14+N15+N16+N17+N18+N19) = 117;
_______________________________________
N1 = 2; N2 = 12; N3 = 24; N4 = 1; N5 = 23; N6 = 23; N7 = 27; N8 = 1;
N9 = 23; N10 = 10; N11 = 6; N12 = 24; N13 = 25; N14 = 1; N15 = 23;
N16 = 10; N17 = 6; N18 = 28; N19 = 24;

G1 = (2 +12 +24 +1+23 + 23 + 27) = 112;
G2 = (12 +24 +1+23 + 23 + 27+1) = 111;
G3 = (24 +1+23 + 23 + 27+1 +23) = 122;
G4 = (1+23 + 23 + 27+1 +23 +10) = 108;
G5 = (23 + 23 + 27+1 +23 +10 +6) = 113;
G6 = (23 + 27+1 +23 +10 +6 +24) = 114;
G7 = (27+1 +23 +10 +6 +24 + 25) = 116;
G8 = (1 +23 +10 +6 +24 + 25 +1) = 90;
G9 = (23 +10 +6 +24 + 25 +1+ 23) = 112;
G10 = (10 +6 +24 + 25 +1+ 23 +10) = 99;
G11 = (6 +24 + 25 +1+ 23 +10 + 6) = 95;
G12 = (24 + 25 +1+ 23 +10 + 6 + 28) = 117;
                                                         G13 = (25 +1+ 23 +10 + 6 + 28 + 24) = 117;

............

PROBLEM 4   

Try to decode Pascal triangle using the code 101

Row Number
Binomial Expansion
0
 
 
 
 
 
1
 
 
 
 
 
1
 
 
 
 
1
 
1
 
 
 
 
2
 
 
 
1
 
2
 
1
 
 
 
3
 
 
1
 
3
 
3
 
1
 
 
4
 
1
 
4
 
6
 
4
 
1
 
5
1
 
5
 
10
 
10
 
5
 
1
We are looking at rows 0 through 5 of Pascal's triangle! The numbers in the rows of Pascal's triangle are the same as the coefficients generated by raising the binomial (x+y) to a power.
1) Math Forum: Pascal's Triangle (http://mathforum.org/)


SOLUTION
A binomial is a polynomial expression with two terms, such as:


Row Number
Binomial Expansion
Connection
Code 101
A0
 
 
 
 
 
01
 
 
 
 
 
1
1010
A1
 
 
 
 
01
 
01
 
 
 
 
101
1011
A2
 
 
 
01
 
02
 
01
 
 
  

      10201
   1012
A3
 
 
01
 
03
 
03
 
01
 
 
1030301
1013
A4
 
01
 
04
 
06
 
04
 
01
 
104060401
1014
A5
01
 
05
 
10
 
10
 
05
 

01

10510100501

1015

A0 = 1;
..........

A1 = (A0 x 101); A1 = (1 x 101) = 101;
............

A2 = (A1 x 101);  A2 =  (101 x 101) = 10201;
...........
A3 = (A2 x 101);  A3 =  (10201 x 101) = 1030301;
.........
A4 = (A3 x 101);  A4 =  (1030301 x 101) = 104060401;
..........
A5 = (A4 x 101);  A5 =  (104060401 x 101) = 10510100501;
............
A6 = (A5 x 101);  A6 =  (10510100501x 101) = 1061520150601;
..........
A7 = (A6 x 101);  A7 =  (1061520150601x 101) = 107213535210701;
............
A8 = (A7 x 101);  A8 =  (107213535210701x 101) = 10828567056280801;
A9 = (A8 x 1001); 
A8 =  (1008028056070056028008001 x 1001) = 1009036084126126084036009001;

Etc.
............

  (A1 : A0) = 101; (A2 : A1) = 101;
(A3 : A2) = 101; (A4 : A3) = 101;
(A5 : A4) = 101; (A6 : A5) = 101;
(An : An-1) = 101;

Etc.
The numbers in the rows of Pascal's triangle are the same as the coefficients generated by raising the binomial  [(An : An-1) = 101)] to a power.
...............

PROBLEM 5
In the Pascal triangle try to develop diagonal 2 from diagonal 1, diagonal 3 from diagonal 2, diagonal 4 from diagonal 3, etc.
Diagonals in Pascal’s triangle
·          
·          
·          
·          
·          
·          
·          
·          
·         Sum
·         D1
·         1
·         1
·         1
·         1
·         1
·         1
·         1.....
·         7
·         D2
·         1
·         2
·         3
·         4
·         5
·         6
·         7.....
·         28
·         D3
·         1
·         3
·         6
·         10
·         15
·         21
·         28....
·         84
·         D4
·         1
·         4
·         10
·         20
·         35
·         56
·         84....
·         210
·         D5
·         1
·         5
·         15
·         35
·         70
·         126
·         210....
·         462
·         D6
·         1
·         6
·         21
·         56
·         126
·         252
·         462....
·         924
·         D7
·         1
·         7
·         28
·         84
·         210
·         462
·         924....
·         1716
·         D8
·         1
·         8
·         36
·         120
·         330
·         792
·         1716....
·         3003
·         D9
·         1
·         9
·         45
·         165
·         495
·         1287
·         3003....
·         5005
·         D10
·         1
·         10
·         55
·         220
·         715
·         2002
·         5005....
·         8008
·         D11
·         1
·         11
·         66
·         286
·         1001
·         3003
·         8008....
·         12376
·         D12
·         1
·         12
·         78
·         364
·         1365
·         4368
·         12376....
·         18564
·         D13
·         1
·         13
·         91
·         455
·         1820
·         6188
·         18564....
·         27132
·         D14
·         1
·         14
·         105
·         560
·         2380
·         8568
·         27132....
·         38760
·         D15
·         1
·         15
·         120
·         680
·         3060
·         11628
·         38760....
·         54264
·         D16
·         1
·         16
·         136
·         816
·         3876
·         15504
·         54264....
·         74613
·         D17
·         1
·         17
·         153
·         969
·         4845
·         20349
·         74613....
·         100947
·         D18
·         1
·         18
·         171
·         1140
·         5985
·         26334
·         100947....
·         134596
·         D19
·         1
·         19
·         190
·         1330
·         7315
·         33649
·         134596....
·         177100
·         D20
·         1
·         20
·         210
·         1540
·         8855
·         42504
·         177100....
·         230230
·         D21
·         1
·         21
·         231
·         1771
·         10626
·         53130
·         230230....
·         296010
·          
·          
·          
·          
·          
·          
·          
·          
·         Etc.

Diagonal D1

(1+1+1+1+1+1+1) = 7;
.............

Diagonal D2

Input = Diagonal D1
Output = Diagonal D2

(1+1+1+1+1+1+1) è (1+(1+1)+(1+1+1)+(1+1+1+1)+(1+1+1+1+1)+(1+1+1+1+1+1)+
+ (1+1+1+1+1+1+1) = (1+2+3+4+5+6+7) =28:
Diagonal D3

Input = Diagonal D2
Output = Diagonal D3

(1+2+3+4+5+6+7) è  (1+(1+2)+(1+2+3)+(1+2+3+4)+(1+2+3+4+5)+ +(1+2+3+4+5+6)+(1+2+3+4+5+6+7) = (1+3+6+10+15+21+28) = 84;
.............

Diagonal D4

Input = Diagonal D3
Output = Diagonal D4

(1+3+6+10+15+21+28) è (1+(1+3)+(1+3+6)+(1+3+6+10)+(1+3+6+10+15) +
+ (1+3+6+10+15+21) + (1+3+6+10+15 + +21+28) = (1+4+10+20+35+56+84)=  210:
............

Diagonal D5

Input = Diagonal D4
Output = Diagonal D5

(1+4+10+20+35+56+84) è (1+(1+4)+(1+4+10)+(1+4+10+20)+(1+4+10+20+35)+
+(1+4+10+20+35+56)+(1+4+10+20+35+56+84) = (1+5+15+35+70+126+210) = 462;
Etc.
.........


Row 1 = 1,3,6,10,15,21,28;
Row 2, column  1 = 1;
Row 2, column 2 = (Row 1, column 1 + row 2) = (1+3) = 4;
Row 2, column 3 = (Row 2, column 2 + row 1, column 3)  = (4+6) = 10;
Row 2, column 4 = (Row 2, column 3 + row 1, column 4)  = (10+10) = 20;
Etc.
...................

PROBLEM 6
Try to code Polynomial expression with three terms


SOLUTION:
A polynomial expression with three terms, such as:

A0  è1; 1 = 101010
A1 è1,01,01; 10101 = 101011
A2 è1,02,03,02,01; 102030201 = 101012
A3 è 1,03,06,07,06,03,01; 1030607060301= 101013
A4 è 1,04,10,16,19,16,10,04,01; 10410161916100401= 101014
A5 è1,05,15,30,45,51,45,30,15,05,01; 105153045514530150501= 101015
 Etc.
..............


CODE JESUS

Numerical value of letters of name Jesus and Maria in Arabic is:

                                          Jesus                                               Maria
ع
ى
س
ى

م
ر
ى
م
ê
ê
ê
ê

ê
ê
ê
ê
18
28
12
28

24
10
28
24

Names Jesus and Maria are interconnected by various codes. Our task is to find those codes and explain how mathematics interconnects those two names.


SOLUTION:

Code 86



Jesus



Maria


í
ê
ê
î

í
ê
ê
î
18
28
12
28

24
10
28
24
î
ê
ê
í

î
ê
ê
í


86



86


(18+28+12+28) = 86;
(24+10+28+24) = 86;
........

Code 1061



Jesus



Maria


í
ê
ê
î

í
ê
ê
î
18
28
12
28

24
10
28
24
ê
ê
ê
ê

ê
ê
ê
ê
S18
S28
S12
S28

S24
S10
S28
S24
ê
ê
ê
ê

ê
ê
ê
ê
171
406
78
406

300
55
406
300
î
ê
ê
í

î
ê
ê
í


1061



1061


S18 = (1+2+3...+18) = 171; S28 = (1+2+3...+28) = 406;
S12 = (1+2+3...+12) = 78;
Etc.
(171+406+78+406) = 1061;
(300+55+406+300) = 1061;
**************



Combinatorics of the codes 86 and 1061

(86 + (1061x Y) = (A1,A2,A3,A4);

A1 = 32;
A2 = 63;
A3 = 53;
A4 = 85;

(A1,A2,A3,A4) è (32,63,53,85);

(32,63,53,85) è 3263 5385;

(32635385) è 3263  5385;


.......

Decoding scheme

Example 1

3263 5385 è 3263 and 5385;

(5385 – 3263) = (1061 + 1061);

***********

Example 2

3263 5385 = (86 + (1061x Y);
Y = 30759;

*************

Example 3

5385 and 3263 è 53853263;

5385 3263 = (86 + (1061x Y);
Y = 50757;

************

Example 4

3263 and 3263 è3263 3263;

3263 3263 = (86 + (1061x Y);
Y = 30757;

**********

Example 5

5385 and 5385 è5385 5385;

5385 5385 = (86 + (1061x Y);
Y = 50759;

*************
Example 6

(3263 5385 – (1061 1061) = (86 + (1061x Y);
Y = 20 758;

*********

Example 7

(3263 5385 + (1061 1061) (86 + (1061x Y);
Y = 40760;

*********

Code 949

Example 1

(3263 5385) – (18 28 12 28) = (949 + (1061 x Y);

Y = 13528;

**********

Example 2

(5385 3263 –(18 28 12 28) = (949 + (1061 x Y);

Y = 33526;

*********

Example 3

(3263 3263) – (18 28 12 28) = (949 + (1061 x Y);

Y = 13 526;

***********

Example 4

(5385 5385) – (18 28 12 28) = (949 + (1061 x Y);

Y = 33 528;

**********

[(18X28X12X28)+(24X10X28X24)] : [(18X28X12X28)-(24X10X28X24)] =

(3263 5385 : y)

y = 795 985;

Etc.

Decoding scheme 3263 5385



3263  5385


í
í

î
î
32
63

53
85
ê




19 , 13
28, 09, 26

18, 21, 14
23,13,14,09,26

(19+(19+13)+(19+13+28)+(19+13+28+09)+(19+13+28+09+26)+ (19+13+28+09+26+18)+

(19+13+28+09+26+18+21)+(19+13+28+09+26+18+21+14)+ (19+13+28+09+26+18+21+14+23)+

(19+13+28+09+26+18+21+14+23+13)+ (19+13+28+09+26+18+21+14+23+13+14)+

(19+13+28+09+26+18+21+14+23+13+14+9)+ (19+13+28+09+26+18+21+14+23+13+14+9+26)=1663;

1663 = (1061 + 86 x y );

Y = 7;

*******

Code 3263


3263

í

î
32

63
ê

ê
19, 13

28, 09, 26
ê

ê
NI

VET

When we translate words: Ni and Vet  to Swedish we will get:

New acknowledgement!

Nema komentara:

Objavi komentar