Problem 1
Magic codes
19 and 7
In group of all natural numbers from X to Y there are
two codes which interconnect all those numbers. Those are codes A and B.
Formula of codes A and B
{[SA(R1,2,3,n) x B] - [SB(R1,2,3,n) x A] + (AxB)} = (AxBxA);
A = ?
B = ?
SA, SB = Groups of AB numbers in group of all natural numbers from X to Y
R1,2,3,n =
Natural numbers from X to Y
.......
Help in resolving this problem:
Example
1
SA(R1,2,3,n)
A= 6; R = 114;
S6(114) =
(109+110+111+112+113+114) ) = 669;
.........
Example 2
SA(R1,2,3,n)
A= 25; R = 233;
S25(233) =
(209+210+211+212+213+214+215+216+217+218+219+220+221+222+223+
+224+225+226+227+228+229+230+231+232+233
) = 5525;
........
Example 3
SB(R1,2,3,n)
B= 8; R = 98;
S8(98) =
(91+92+93+94+95+96+97+98) = 756;
Etc.
.................................................................
SOLUTION:
{[SA(R1,2,3,n) x B] - [SB(R1,2,3,n) x A] + (AxB)} = (AxBxA);
A = 7;
B = 19;
............
{[S7(R1,2,3,n) x 19] - [S19(R1,2,3,n) x 7] + (7x19)} = (7x19x7);
...........
Example 1
R = 35;
{[S7(35) x 19] - [S19(35) x 7] + (7x19)} = (7x19x7);
S7(35) = (29+30+31+32+33+34+35) = 224;
S19(35) = (17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35)
= 494;
(224 x 19) – (494 x 7) + (7 x 19) = (7 x 19 x 7);
...............
Example 2
R = 114;
{[S7(114) x 19] - [S19(114) x 7] + (7x19)} = (7x19x7);
S7(114) = (108+109+110+111+112+113+114) = 777;
S19(114) = (96+97+98...+114) = 1995;
(777 x 19) – (1995 x 7) + (7 x 19) = (7 x 19 x 7);
..............
Example 3
R = 1070;
{[S7(1070) x
19] - [S19(1070) x 7] + (7x19)} = (7x19x7);
S7(1070) = (1064+1065+1066...+1070) = 7469;
S19(1070) = (1052+1053+1054...+1070) = 20159;
(7469 x 19) – (20159 x 7) + (7 x 19) = (7 x 19 x 7);
...............
Example 4
R = Y;
{[S7(Y) x 19] - [S19(Y) x 7] + (7x19)} = (7x19x7);
*********
PROBLEM 2
Magic codes 19 and 7 in magic square
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
In this square, a group of numbers which
are interconnected by magic codes 19 and 7 need to be found.
SOLUTION:
Example 1
Groups of even and odd numbers in Square
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Even numbers = (8 + 24 + 26 + 30 + 36 + 44 + 46 + 60 + 62 + 64 + 88) = 488;
Odd numbers = (9+15+25+43+45+47+49+59+61+63+65+79+87+93) = 740;
Analog code of number 488 is number 884;
Analog code of number 740 is number 047;
(884+47) = (AxBxA) = (7x19x7);
............
Example 2
Groups
of numbers that are distributed in the squares with even and odd numbers
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Group of numbers that are distributed in the squares
with even number
(2,4,6,8 etc.) = (9+24+26+36+ 44+46+49+60+62+64+79+88) = 587;
Group of numbers that are distributed in the squares
with odd number
(1,3,5,7,9 etc.) = (8+15+25+30+43+45+47+59+61+63+65+87+ 93) = 641;
Analog code of number 587 is number 785;
Analog code of number 641 is number 146;
(785+146) = (AxBxA) = (7x19x7);
............
Example 3
Numbers
in even and odd columns
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Numbers in even columns ( 2 and
4) = (9+24+30+43+46+49+61+63+79+88) = 492;
Numbers in odd columns (1, 3, 5) =
(8+15+25+26+36+44+45+47+59+60+62+64+65+87+93) =736;
Analog code of number 492 is number 294;
Analog code of number 736 is number 637;
(294+637) = (AxBxA) = (7x19x7);
............
Example 4
Outer
and inner numbers in quadrant
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Outer numbers in quadrant =
(8+9+15+24+25+26+44+45+59+60+64+65+79+87+88+93) = 791;
Inner numbers in quadrant = (30+36+43+46+47+49+61+62+63)
= 437;
Analog code of number 791 is number 197;
Analog code of number 437 is number 734;
(197+734) = (AxBxA) = (7x19x7);
............
Example 5
Numbers
in columns
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Columns 1,2,4,5 =
(8+9+24+25+26+30+43+44+45+46+49+59+60+61+63+64+65+79+88+93)=981;
Column 3 = (15+36+47+62+87) = 247;
Analog code of number 981 is number 189;
Analog code of number 247 is number 742;
(189+742) = (AxBxA) = (7x19x7);
............
Example 6
Numbers
in diagonal “A”
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Diagonal “A” = (8+30+47+63+93) = 241;
Other numbers =
(9+15+24+25+26+36+43+44+45+46+49+59+60+61+62+64+65+79+87+88) = 987;
Analog code of number 241 is number 142;
Analog code of number 987 is number 789;
(142+789) = (AxBxA) = (7x19x7);
............
Example 7
Groups
of numbers
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Group
1 = (8+9+15+36+47+62+87+88+93) = 445;
Group
2 =(24+25+26+30+43+44+45+46+49+59+60+61+63+64+65+79) = 783;
Analog code of number 445 is number 544;
Analog code of number 783 is number 387;
(544+387) = (AxBxA) = (7x19x7);
............
Example 8
Groups of numbers
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Group 1 = (8+9+15+24+25+44+59+64+65+79+87+88+93) = 660;
Group 2 = (26+30+36+43+45+46+47+49+60+61+62+63) = 568;
Analog code of number 660 is number 066;
Analog code of number 568 is number 865;
(66+865) = (AxBxA) = (7x19x7);
............
Example 9
Groups of numbers
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Group 1 = (8+25+30+36+43+45+46+47+49+59+61+62+63+65+93) = 732;
Group 2 = (9+15+24+26+44+60+64+79+87+88) = 496;
Analog code of number 732 is number 237;
Analog code of number 496 is number 694;
(237+694) = (AxBxA) = (7x19x7);
............
Example 10
Groups of numbers
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Group 1 = (8+25+30+43+47+61+63+65+93) = 435;
Group 2 = (9+15+24+26+36+44+45+46+49+59+60+62+64+79+87+88) = 793;
Analog code of number 435 is number 534;
Analog code of number 793 is number 397;
(534+397) = (AxBxA) = (7x19x7);
............
Example 11
Groups of numbers
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Group 1 = (8+9+15+24+25+30+43+61+63+65+79+87+88+93) = 690;
Group 2 = (26+36+44+45+46+47+49+59+60+62+64) = 538;
Analog code of number 690 is number 096;
Analog code of number 538 is number 835;
(96+835) = (AxBxA) = (7x19x7);
............
Example 12
Groups of numbers
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Group 1 = (8+9+15+25+26+36+44+45+47+59+60+62+64+65+87+88+93) = 833;
Group 2 = (24+30+43+46+49+61+63+79) = 395;
Analog code of number 833 is number 338;
Analog code of number 395 is number 593;
(338+593) = (AxBxA) = (7x19x7);
............
Example 13
Groups of numbers
8
|
9
|
15
|
24
|
25
|
26
|
30
|
36
|
43
|
44
|
45
|
46
|
47
|
49
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
79
|
87
|
88
|
93
|
Group 1 = (8+25+30+36+43+46+49+61+62+63+65+93) = 581;
Group 2 = (9+15+24+26+44+45+47+59+60+64+79+87+88) = 647;
Analog code of number 581 is number 185;
Analog code of number 647 is number 746;
(185+746) = (AxBxA) = (7x19x7);
............
Example 13
Groups of numbers
8
|
9
|
15
|
24
|
26
|
30
|
36
|
43
|
45
|
46
|
47
|
49
|
60
|
61
|
62
|
63
|
65
|
79
|
87
|
88
|
Group 1 = (8+9+24+25+30+43+46+49+61+63+65+79+88+93) = 683;
Group 2 = (15+26+36+44+45+47+59+60+62+64+87) = 545;
Analog code of number 683 is number 386;
Analog code of number 545 is number 545;
(386+545) = (AxBxA) = (7x19x7);
etc.
PROBLEM
3
Codes
19 and 7 in
equation
with 19 unknown values
(N1+N2+N3+N4+N5+N6+N7+N8+N9+N10+N11+N12+N13+N14+N15
+
+
N16+N17+N18+N19) = Y;
Try to find
unknown values using codes 19 and 7.
Solution
In this
equation we have 1 group with 19 unknown values and 13 groups with 7 unknown
values:
1 and 19 è 119;
13 and 07 =
1307;
Y = (119 +
1307) è 1426;
(A1+A2+A3+A4+A5+A6+A7+A8+A9+A10+A11+A12+A13+A14+15
+
+
A16+A17+A18+A19) =1426;
Groups
with 7 numbers
G1 =
(N1,N2,N3,N4,N5,N6,N7);
G2 =
(N2,N3,N4,N5,N6,N7,N8);
G3 =
(N3,N4,N5,N6,N7,N8,N9);
G4 =
(N4,N5,N6,N7,N8,N9,N10);
G5 =
(N5,N6,N7,N8,N9,N10,N11);
G6 =
(N6,N7,N8,N9,N10,N11,N12);
G7 =
(N7,N8,N9,N10,N11,N12,N13);
G8 = (N8,N9,N10,N11,N12,N13,N14);
G9 =
(N9,N10,N11,N12,N13,N14,N15);
G10 =
(N10,N11,N12,N13,N14,N15,N16);
G 11 =
(N11,N12,N13,N14,N15,N16,N17);
G12 =
(N12,N13,N14,N15,N16,N17,N18);
G13 =
(N13,N14,N15,N16,N17,N18,N19);
(G1+G2+G3+G4+G5+G6+G7+G8+G9+G10+G11+G12+G13)
=1426;
Solution:
G1 = 112; G2=111;
G3=122; G4=108; G5=113; G6 =114; G7=116; G8=90;
G9=112; G10=99;
G11=95; G12=117; G13=117;
(112+111+122+108+113+114+116+90+112+99+95+117+117)
= 1426;
G1 = (N1+N2+N3+N4+N5+N6+N7) = 112;
G2 =
(N2+N3+N4+N5+N6+N7+N8) = 111;
G3 =
(N3+N4+N5+N6+N7+N8+N9) = 122;
G4 =
(N4+N5+N6+N7+N8+N9+N10) = 108;
G5 =
(N5+N6+N7+N8+N9+N10+N11) = 113;
G6 =
(N6+N7+N8+N9+N10+N11+N12) = 114;
G7 =
(N7+N8+N9+N10+N11+N12+N13) = 116;
G8 =
(N8+N9+N10+N11+N12+N13+N14) = 90;
G9 =
(N9+N10+N11+N12+N13+N14+N15) = 112;
G10 =
(N10+N11+N12+N13+N14+N15+N16) = 99;
G11 =
(N11+N12+N13+N14+N15+N16+N17) = 95;
G12 =
(N12+N13+N14+N15+N16+N17+N18) = 117;
G13 =
(N13+N14+N15+N16+N17+N18+N19) = 117;
_______________________________________
N1
= 2; N2 = 12; N3 = 24; N4 = 1; N5 = 23; N6 = 23; N7 = 27; N8 = 1;
N9
= 23; N10 = 10; N11 = 6; N12 = 24; N13 = 25; N14 = 1; N15 = 23;
N16
= 10; N17 = 6; N18 = 28; N19 = 24;
G1 = (2 +12
+24 +1+23 + 23 + 27) = 112;
G2 = (12 +24
+1+23 + 23 + 27+1) = 111;
G3 = (24
+1+23 + 23 + 27+1 +23) = 122;
G4 = (1+23 +
23 + 27+1 +23 +10) = 108;
G5 = (23 + 23
+ 27+1 +23 +10 +6) = 113;
G6 = (23 +
27+1 +23 +10 +6 +24) = 114;
G7 = (27+1
+23 +10 +6 +24 + 25) = 116;
G8 = (1 +23
+10 +6 +24 + 25 +1) = 90;
G9 = (23 +10
+6 +24 + 25 +1+ 23) = 112;
G10 = (10 +6
+24 + 25 +1+ 23 +10) = 99;
G11 = (6 +24
+ 25 +1+ 23 +10 + 6) = 95;
G12 = (24 +
25 +1+ 23 +10 + 6 + 28) = 117;
G13 = (25 +1+ 23 +10 + 6 + 28 + 24) = 117;
............
PROBLEM
4
Try
to decode Pascal triangle using the code 101
Row
Number
|
Binomial
Expansion
|
||||||||||
0
|
Â
|
Â
|
Â
|
Â
|
Â
|
1
|
Â
|
Â
|
Â
|
Â
|
Â
|
1
|
Â
|
Â
|
Â
|
Â
|
1
|
Â
|
1
|
Â
|
Â
|
Â
|
Â
|
2
|
Â
|
Â
|
Â
|
1
|
Â
|
2
|
Â
|
1
|
Â
|
Â
|
Â
|
3
|
Â
|
Â
|
1
|
Â
|
3
|
Â
|
3
|
Â
|
1
|
Â
|
Â
|
4
|
Â
|
1
|
Â
|
4
|
Â
|
6
|
Â
|
4
|
Â
|
1
|
Â
|
5
|
1
|
Â
|
5
|
Â
|
10
|
Â
|
10
|
Â
|
5
|
Â
|
1
|
We are looking at rows 0 through 5 of Pascal's triangle! The numbers in the rows of Pascal's triangle are
the same as the coefficients generated by raising the binomial (x+y) to a
power.
1) Math Forum: Pascal's Triangle
(http://mathforum.org/)
SOLUTION
A binomial is a polynomial expression with two terms, such as:
Row Number
|
Binomial Expansion
|
Connection
|
Code 101
|
|||||||||||
A0
|
Â
|
Â
|
Â
|
Â
|
Â
|
01
|
Â
|
Â
|
Â
|
Â
|
Â
|
1
|
1010
|
|
A1
|
Â
|
Â
|
Â
|
Â
|
01
|
Â
|
01
|
Â
|
Â
|
Â
|
Â
|
101
|
1011
|
|
A2
|
Â
|
Â
|
Â
|
01
|
Â
|
02
|
Â
|
01
|
Â
|
Â
|
Â
|
10201
|
1012
|
|
A3
|
Â
|
Â
|
01
|
Â
|
03
|
Â
|
03
|
Â
|
01
|
Â
|
Â
|
1030301
|
1013
|
|
A4
|
Â
|
01
|
Â
|
04
|
Â
|
06
|
Â
|
04
|
Â
|
01
|
Â
|
104060401
|
1014
|
|
A5
|
01
|
Â
|
05
|
Â
|
10
|
Â
|
10
|
Â
|
05
|
Â
|
01
|
10510100501
1015
A0 = 1;
..........
A1 = (A0 x 101); A1 = (1 x
101) = 101;
............
A2 = (A1 x 101); A2 = (101 x 101) = 10201;
...........
A3 = (A2 x 101); A3 = (10201 x 101) = 1030301;
.........
A4 = (A3 x 101); A4 = (1030301 x 101) = 104060401;
..........
A5 = (A4 x 101); A5 = (104060401 x 101) = 10510100501;
............
A6 = (A5 x 101); A6 = (10510100501x 101) = 1061520150601;
..........
A7 = (A6 x 101); A7 = (1061520150601x 101) = 107213535210701;
............
A8 = (A7 x 101); A8 = (107213535210701x 101) = 10828567056280801;
A9 = (A8 x 1001);
A8 = (1008028056070056028008001 x 1001) =
1009036084126126084036009001;
Etc.
............
(A1 : A0) = 101; (A2 : A1) = 101;
(A3 : A2) = 101; (A4
: A3) = 101;
(A5 : A4) = 101; (A6
: A5) = 101;
(An : An-1) = 101;
Etc.
The numbers in the
rows of Pascal's triangle are the same as the coefficients generated by raising
the binomial [(An : An-1) = 101)] to a
power.
...............
PROBLEM
5
In the
Pascal triangle try to develop diagonal 2 from diagonal 1, diagonal 3 from
diagonal 2, diagonal 4 from diagonal 3, etc.
Diagonals in Pascal’s
triangle
·
|
·
|
·
|
·
|
·
|
·
|
·
|
·
|
·
Sum
|
·
D1
|
·
1
|
·
1
|
·
1
|
·
1
|
·
1
|
·
1
|
·
1.....
|
·
7
|
·
D2
|
·
1
|
·
2
|
·
3
|
·
4
|
·
5
|
·
6
|
·
7.....
|
·
28
|
·
D3
|
·
1
|
·
3
|
·
6
|
·
10
|
·
15
|
·
21
|
·
28....
|
·
84
|
·
D4
|
·
1
|
·
4
|
·
10
|
·
20
|
·
35
|
·
56
|
·
84....
|
·
210
|
·
D5
|
·
1
|
·
5
|
·
15
|
·
35
|
·
70
|
·
126
|
·
210....
|
·
462
|
·
D6
|
·
1
|
·
6
|
·
21
|
·
56
|
·
126
|
·
252
|
·
462....
|
·
924
|
·
D7
|
·
1
|
·
7
|
·
28
|
·
84
|
·
210
|
·
462
|
·
924....
|
·
1716
|
·
D8
|
·
1
|
·
8
|
·
36
|
·
120
|
·
330
|
·
792
|
·
1716....
|
·
3003
|
·
D9
|
·
1
|
·
9
|
·
45
|
·
165
|
·
495
|
·
1287
|
·
3003....
|
·
5005
|
·
D10
|
·
1
|
·
10
|
·
55
|
·
220
|
·
715
|
·
2002
|
·
5005....
|
·
8008
|
·
D11
|
·
1
|
·
11
|
·
66
|
·
286
|
·
1001
|
·
3003
|
·
8008....
|
·
12376
|
·
D12
|
·
1
|
·
12
|
·
78
|
·
364
|
·
1365
|
·
4368
|
·
12376....
|
·
18564
|
·
D13
|
·
1
|
·
13
|
·
91
|
·
455
|
·
1820
|
·
6188
|
·
18564....
|
·
27132
|
·
D14
|
·
1
|
·
14
|
·
105
|
·
560
|
·
2380
|
·
8568
|
·
27132....
|
·
38760
|
·
D15
|
·
1
|
·
15
|
·
120
|
·
680
|
·
3060
|
·
11628
|
·
38760....
|
·
54264
|
·
D16
|
·
1
|
·
16
|
·
136
|
·
816
|
·
3876
|
·
15504
|
·
54264....
|
·
74613
|
·
D17
|
·
1
|
·
17
|
·
153
|
·
969
|
·
4845
|
·
20349
|
·
74613....
|
·
100947
|
·
D18
|
·
1
|
·
18
|
·
171
|
·
1140
|
·
5985
|
·
26334
|
·
100947....
|
·
134596
|
·
D19
|
·
1
|
·
19
|
·
190
|
·
1330
|
·
7315
|
·
33649
|
·
134596....
|
·
177100
|
·
D20
|
·
1
|
·
20
|
·
210
|
·
1540
|
·
8855
|
·
42504
|
·
177100....
|
·
230230
|
·
D21
|
·
1
|
·
21
|
·
231
|
·
1771
|
·
10626
|
·
53130
|
·
230230....
|
·
296010
|
·
|
·
|
·
|
·
|
·
|
·
|
·
|
·
|
·
Etc.
|
Diagonal
D1
(1+1+1+1+1+1+1) = 7;
.............
Diagonal
D2
Input = Diagonal
D1
Output = Diagonal
D2
(1+1+1+1+1+1+1) è
(1+(1+1)+(1+1+1)+(1+1+1+1)+(1+1+1+1+1)+(1+1+1+1+1+1)+
+ (1+1+1+1+1+1+1) = (1+2+3+4+5+6+7) =28:
Diagonal
D3
Input = Diagonal
D2
Output = Diagonal
D3
(1+2+3+4+5+6+7) è (1+(1+2)+(1+2+3)+(1+2+3+4)+(1+2+3+4+5)+
+(1+2+3+4+5+6)+(1+2+3+4+5+6+7) = (1+3+6+10+15+21+28) = 84;
.............
Diagonal
D4
Input = Diagonal
D3
Output = Diagonal
D4
(1+3+6+10+15+21+28) è
(1+(1+3)+(1+3+6)+(1+3+6+10)+(1+3+6+10+15) +
+ (1+3+6+10+15+21) +
(1+3+6+10+15 + +21+28) = (1+4+10+20+35+56+84)= 210:
............
Diagonal
D5
Input = Diagonal
D4
Output = Diagonal
D5
(1+4+10+20+35+56+84) è
(1+(1+4)+(1+4+10)+(1+4+10+20)+(1+4+10+20+35)+
+(1+4+10+20+35+56)+(1+4+10+20+35+56+84)
= (1+5+15+35+70+126+210) = 462;
Etc.
.........
Row 1 =
1,3,6,10,15,21,28;
Row 2, column 1 = 1;
Row 2, column 2 =
(Row 1, column 1 + row 2) = (1+3) = 4;
Row 2, column 3 =
(Row 2, column 2 + row 1, column 3) =
(4+6) = 10;
Row 2, column 4 =
(Row 2, column 3 + row 1, column 4) =
(10+10) = 20;
Etc.
...................
PROBLEM
6
Try to
code Polynomial expression with three terms
SOLUTION:
A polynomial expression with
three terms, such as:
A0 è1;
1 = 101010
A1 è1,01,01;
10101 = 101011
A2 è1,02,03,02,01;
102030201 = 101012
A3 è
1,03,06,07,06,03,01; 1030607060301= 101013
A4 è
1,04,10,16,19,16,10,04,01; 10410161916100401= 101014
A5 è1,05,15,30,45,51,45,30,15,05,01;
105153045514530150501= 101015
Etc.
..............
CODE
JESUS
Numerical value of letters
of name Jesus and Maria in Arabic is:
Jesus
Maria
ع
|
ى
|
س
|
ى
|
|
م
|
ر
|
ى
|
م
|
ê
|
ê
|
ê
|
ê
|
|
ê
|
ê
|
ê
|
ê
|
18
|
28
|
12
|
28
|
|
24
|
10
|
28
|
24
|
Names Jesus and Maria are
interconnected by various codes. Our task is to find those codes and explain
how mathematics interconnects those two names.
SOLUTION:
Code 86
|
|
Jesus
|
|
|
|
Maria
|
|
|
||||||
í
|
ê
|
ê
|
î
|
|
í
|
ê
|
ê
|
î
|
||||||
18
|
28
|
12
|
28
|
|
24
|
10
|
28
|
24
|
||||||
î
|
ê
|
ê
|
í
|
|
î
|
ê
|
ê
|
í
|
||||||
|
|
86
|
|
|
|
86
|
|
|
||||||
(18+28+12+28) = 86;
(24+10+28+24) = 86;
........
Code 1061
|
|
Jesus
|
|
|
|
Maria
|
|
|
||||||
í
|
ê
|
ê
|
î
|
|
í
|
ê
|
ê
|
î
|
||||||
18
|
28
|
12
|
28
|
|
24
|
10
|
28
|
24
|
||||||
ê
|
ê
|
ê
|
ê
|
|
ê
|
ê
|
ê
|
ê
|
||||||
S18
|
S28
|
S12
|
S28
|
|
S24
|
S10
|
S28
|
S24
|
||||||
ê
|
ê
|
ê
|
ê
|
|
ê
|
ê
|
ê
|
ê
|
||||||
171
|
406
|
78
|
406
|
|
300
|
55
|
406
|
300
|
||||||
î
|
ê
|
ê
|
í
|
|
î
|
ê
|
ê
|
í
|
||||||
|
|
1061
|
|
|
|
1061
|
|
|
||||||
S18 = (1+2+3...+18) = 171; S28
= (1+2+3...+28) = 406;
S12 = (1+2+3...+12) = 78;
Etc.
(171+406+78+406) = 1061;
(300+55+406+300) = 1061;
**************
Combinatorics of the codes 86 and 1061
(86 + (1061x Y) = (A1,A2,A3,A4);
A1 = 32;
A2 = 63;
A3 = 53;
A4 = 85;
(A1,A2,A3,A4) è (32,63,53,85);
(32,63,53,85) è 3263 5385;
(32635385) è 3263 5385;
.......
Decoding
scheme
Example 1
3263 5385 è 3263 and 5385;
(5385 – 3263) = (1061 + 1061);
***********
Example 2
3263 5385 = (86 + (1061x Y);
Y = 30759;
*************
Example 3
5385 and 3263 è 53853263;
5385 3263 = (86 + (1061x Y);
Y = 50757;
************
Example 4
3263 and 3263 è3263 3263;
3263 3263 = (86 + (1061x Y);
Y = 30757;
**********
Example 5
5385 and 5385 è5385 5385;
5385 5385 = (86 + (1061x Y);
Y = 50759;
*************
Example 6
(3263 5385 –
(1061 1061) = (86
+ (1061x Y);
Y = 20 758;
*********
Example 7
(3263 5385 +
(1061 1061) (86
+ (1061x Y);
Y = 40760;
*********
Code 949
Example 1
(3263 5385) –
(18 28 12 28) = (949 + (1061 x Y);
Y = 13528;
**********
Example 2
(5385 3263
–(18 28 12 28) = (949 + (1061 x Y);
Y = 33526;
*********
Example 3
(3263 3263) –
(18 28 12 28) = (949 + (1061 x Y);
Y = 13 526;
***********
Example 4
(5385 5385) –
(18 28 12 28) = (949 + (1061 x Y);
Y = 33 528;
**********
[(18X28X12X28)+(24X10X28X24)] : [(18X28X12X28)-(24X10X28X24)] =
(3263 5385 : y)
y = 795 985;
Etc.
Decoding
scheme 3263 5385
|
|
3263 5385
|
|
|
í
|
í
|
|
î
|
î
|
32
|
63
|
|
53
|
85
|
ê
|
|
|
|
|
19 , 13
|
28, 09, 26
|
|
18, 21, 14
|
23,13,14,09,26
|
(19+(19+13)+(19+13+28)+(19+13+28+09)+(19+13+28+09+26)+
(19+13+28+09+26+18)+
(19+13+28+09+26+18+21)+(19+13+28+09+26+18+21+14)+
(19+13+28+09+26+18+21+14+23)+
(19+13+28+09+26+18+21+14+23+13)+
(19+13+28+09+26+18+21+14+23+13+14)+
(19+13+28+09+26+18+21+14+23+13+14+9)+
(19+13+28+09+26+18+21+14+23+13+14+9+26)=1663;
1663 = (1061
+ 86 x y );
Y = 7;
*******
Code 3263
|
3263
|
|
í
|
|
î
|
32
|
|
63
|
ê
|
|
ê
|
19, 13
|
|
28, 09, 26
|
ê
|
|
ê
|
NI
|
|
VET
|
When we translate
words: Ni and Vet to Swedish we will
get:
New acknowledgement!
Nema komentara:
Objavi komentar