Why
hot water freezes faster than cold?
Part 2
Water temperature
|
Kw / 10−14
|
pKw
|
0°C
|
0.1
|
14.92
|
10°C
|
0.3
|
14.52
|
18°C
|
0.7
|
14.16
|
25°C
|
1.2
|
13.92
|
30°C
|
1.8
|
13.75
|
50°C
|
8.0
|
13,10
|
60°C
|
12.6
|
12.90
|
70°C
|
21.2
|
12.67
|
80°C
|
35
|
12.46
|
90°C
|
53
|
12.28
|
100°C
|
73
|
12.14
|
Digital
language of dissociation constant of water
The matrix mechanism of water
temperature have been analyzed by the application of cybernetic methods,
information theory and system theory, respectively. First, we decode the dissociation constant of water
expressed as pKw:
Example 1.
Water temperature
|
Kw / 10−14
|
pKw
|
0°C
|
0.1
|
14.92
|
100°C
|
73
|
12.14
|
Sum
|
27,06
|
Water
temperature
|
Kw / 10−14
|
pKw
|
18°C
|
0.7
|
14.16
|
60°C
|
12.6
|
12.90
|
Sum
|
27,06
|
[(0 +100)-(60+18)] = 22; (27,06 x 100) = (22+22+22…+ 22);
Determinanst 2 x 2
DET( 0.1, 14.92, 12.14, 73) =
-168;
DET (0.7, 14.16, 12.6, 12.90) = -168;
In this example there
a mathematical balance between constants Kw / 10−14
and pKw. This
balance of the determine program, cyber laws and information.
Example 2.
Water
temperature
|
Kw / 10−14
|
pKw
|
10°C
|
0.3
|
14.52
|
18°C
|
0.7
|
14.16
|
60°C
|
12.6
|
12.90
|
90°C
|
53
|
12.28
|
Sum
|
53,86
|
Water
temperature
|
Kw / 10−14
|
pKw
|
0°C
|
0.1
|
14.92
|
10°C
|
0.3
|
14.52
|
90°C
|
53
|
12.28
|
100°C
|
73
|
12.14
|
Sum
|
53,86
|
Determinant 4 x 4
0,3
|
14,52
|
0,7
|
14,16
|
12,6
|
12,90
|
53
|
12,28
|
0,1
|
14,92
|
0,3
|
14,52
|
53
|
12,28
|
73
|
12,14
|
0
In this example there is a balance of size
Kw / 10−14
and
pKw
Example 3.
Water
temperature
|
Kw / 10−14
|
pKw
|
10°C
|
0.3
|
14.52
|
18°C
|
0.7
|
14.16
|
60°C
|
12.6
|
12.90
|
80°C
|
35
|
12.46
|
Sum
|
54,04
|
Water
temperature
|
Kw / 10−14
|
pKw
|
0°C
|
0.1
|
14.92
|
10°C
|
0.3
|
14.52
|
80°C
|
35
|
12.46
|
100°C
|
73
|
12.14
|
Sum
|
54,04
|
Example 4.
Water
temperature
|
Kw / 10−14
|
pKw
|
18°C
|
0.7
|
14.16
|
25°C
|
1.2
|
13.92
|
30°C
|
1.8
|
13.75
|
50°C
|
8.0
|
13,10
|
60°C
|
12.6
|
12.90
|
Sum
|
67,83
|
Water
temperature
|
Kw / 10−14
|
pKw
|
0°C
|
0.1
|
14.92
|
25°C
|
1.2
|
13.92
|
30°C
|
1.8
|
13.75
|
50°C
|
8.0
|
13,10
|
100°C
|
73
|
12.14
|
Sum
|
67,83
|
Example 5.
Water
temperature
|
Kw / 10−14
|
pKw
|
18°C
|
0.7
|
14.16
|
25°C
|
1.2
|
13.92
|
30°C
|
1.8
|
13.75
|
50°C
|
8.0
|
13,10
|
60°C
|
12.6
|
12.90
|
70°C
|
21.2
|
12.67
|
Sum
|
80,50
|
Water
temperature
|
Kw / 10−14
|
pKw
|
0°C
|
0.1
|
14.92
|
25°C
|
1.2
|
13.92
|
30°C
|
1.8
|
13.75
|
50°C
|
8.0
|
13,10
|
70°C
|
21.2
|
12.67
|
100°C
|
73
|
12.14
|
Sum
|
80,50
|
Water
temperature
|
Kw / 10−14
|
pKw
|
0°C
|
0.1
|
14.92
|
18°C
|
0.7
|
14.16
|
25°C
|
1.2
|
13.92
|
60°C
|
12.6
|
12.90
|
80°C
|
35
|
12.46
|
100°C
|
73
|
12.14
|
Sum
|
80,50
|
Example 5.
Water
temperature
|
Kw / 10−14
|
pKw
|
18°C
|
0.7
|
14.16
|
25°C
|
1.2
|
13.92
|
30°C
|
1.8
|
13.75
|
50°C
|
8.0
|
13,10
|
60°C
|
12.6
|
12.90
|
70°C
|
21.2
|
12.67
|
80°C
|
35
|
12.46
|
Sum
|
92,96
|
Water
temperature
|
Kw / 10−14
|
pKw
|
0°C
|
0.1
|
14.92
|
25°C
|
1.2
|
13.92
|
30°C
|
1.8
|
13.75
|
50°C
|
8.0
|
13,10
|
70°C
|
21.2
|
12.67
|
80°C
|
35
|
12.46
|
100°C
|
73
|
12.14
|
Sum
|
92,96
|
etc.
From the above examples we
see that the dissociation constant of water determine the programmatic cyber
laws. Here are some examples: